4.3 Problems

Problem 1. Approximate $\int_0^{.5} \frac{2}{x-4} dx$ using (a) trapezoidal rule (b) Simpson's rule (c) midpoint rule. Bound the error, and compare that to the actual error.

Problem 2. The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4, and Simpson's rule gives the value 2. What is f(1)?

Problem 3. Find the constants c_0, c_1, x_1 so that the quadrature formula $\int_0^1 f(x) dx = c_0 f(0) + c_1 f(x_1)$ has the highest possible degree of precision.

4.4 Problems

Problem 4. Determine the values of n and h required to approximate $\int_0^2 e^{2x} \sin(3x) dx$ to within 10^{-4} using (a) composite trapezoidal rule (b) composite Simpson's rule (c) composite midpoint rule.

4.5 Problems

Problem 5. Use Roomberg integration to compute $R_{3,3}$ for $\int_1^{1.5} x^2 \ln(x) dx$